10ME/AU33

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Basic Thermodynamics

Time: 3 hrs .

Max. Marks:100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
 2. Use of thermodynamics data hand book is permitted.
 3. Assume any missing data suitably, if any.

PART - A

1 a. Distinguish between
(i) Point function and path function (ii) Microscopic and macroscopic approaches.
(08 Marks)
b. The emf in a thermocouple with test junction at $t^{\circ} \mathrm{C}$ on gas thermometer scale and reference junction at ice point is given by, $\varepsilon=0.20 \mathrm{t}-5 \times 10^{-4} \mathrm{t}^{2} \mathrm{mV}$. The millivoltmeter is calibrated at ice $\left(0^{\circ} \mathrm{C}\right)$ and steam $\left(100^{\circ} \mathrm{C}\right)$ points. What will this thermometer read in a place where the gas thermometer reads $60^{\circ} \mathrm{C}$.
(06 Marks)
c. The temperature t on a thermometric scale is defined in terms of a property ' K ' by the relation $\mathrm{t}=\mathrm{a} \ln \mathrm{k}+\mathrm{b}$ where a and b are constants. The value of K are found to be 1.83 and 6.78 at the ice point and steam point, the temperatures of which are assigned the number 0 to 100 respectively. Determine the temperature corresponding to a reading of $\mathrm{K}=2.42$ on the thermometer.
(06 Marks)
2 a. Distinguish between: (i) Mechanical work and thermodynamic work.
(ii) Heat and work.
(06 Marks)
b. Derive an expression for work for the following process $\mathrm{PV}^{\mathrm{n}}=$ constant. (06 Marks)
c. A mass of gas is compressed in a quasi-static process from $80 \mathrm{kPa}, 0.1 \mathrm{~m}^{3}$ to 0.4 MPa , $0.03 \mathrm{~m}^{3}$. Assuming that the pressure and volume are related by $\mathrm{PV}^{\mathrm{n}}=$ constant, find the work done by the gas system.
(08 Marks)
3 a. State the first law, (i) for a closed system undergoing a cycle (ii) for a closed system undergoing a change of state.
(04 Marks)
b. Show that energy is a property of a system. (06 Marks)
c. The properties of a certain fluid are related as follows :
$\mathrm{u}=196+0.718 \mathrm{t}$
$P V=0.287(t+273)$
where u is the specific internal energy ($\mathrm{kJ} / \mathrm{kg}$), t is in ${ }^{\circ} \mathrm{C}, \mathrm{P}$ is pressure $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ and V is specific volume $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$. For this fluid find C_{p} and C_{V}.
(10 Marks)
4 a. Explain PMM I and PMM II with diagrams.
(04 Marks)
b. Sketch P-V and T-S diagrams indicating all processes for Carnot cycle. (06 Marks)
c. A house hold refrigerator is maintained at a temperature of $2^{\circ} \mathrm{C}$. Every time the door is opened, warm material is placed inside, introducing an average of 420 kJ , but making only a small change in the temperature of the refrigerator. The door is opened 20 times a day, and the refrigerator operates at 15% of the ideal COP. The cost of work is 32 paise per kWh . What is the monthly bill for this refrigerator? The atmosphere is at $30^{\circ} \mathrm{C}$ (consider 30 days in a month).
(10 Marks)

PART - B

5 a. State and prove Inequality of Clausius. Mention its significance.
b. One kg of water at 273 K is brought into contact with a heat reservoir at 373 K . When the
water has reached 373 K , find the entropy change of the water, of the reservoir and of the universe.
c. Explain principle of increase of entropy.

6 a. Define the following:
(i) Subcooled liquid.
(ii) Triple point.
(iii) Critical point.
(06 Marks)
b. Explain Throttling calorimeter.
c. A vessel of $0.045 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at a temperature of $280^{\circ} \mathrm{C}$. The mass of the liquid present is 8 kg . Find the mass the specific volume, the enthalpy, the entropy and the internal energy. Properties at 280° are as below:
$\mathrm{P}_{\mathrm{sat}}=64.202 \mathrm{bar}, \quad \mathrm{V}_{\mathrm{f}}=0.0013324 \mathrm{~m}^{3} / \mathrm{kg} \quad \mathrm{V}_{\mathrm{g}}=0.030126 \mathrm{~m}^{3} / \mathrm{kg}$,
$\mathrm{h}_{\mathrm{f}}=1236.8 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{h}_{\mathrm{fg}}=1543.6 \mathrm{~kJ} / \mathrm{kg}, \quad \quad \mathrm{S}_{\mathrm{f}}=3.0683 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
(08 Marks)
7 a. Express the changes in internal energy and enthalpy of an ideal gas in a reversible adiabatic process in terms of the pressure ratio.
(12 Marks)
b. A certain gas has $\mathrm{C}_{\mathrm{p}}=1.9$ and $\mathrm{C}_{\mathrm{y}}=1.5 \mathrm{~kJ} / \mathrm{kgK}$. Find its molecular weight and the gas constant. A constant volume chamber of $0.3 \mathrm{~m}^{3}$ capacity contains 2 kg of this gas at $8^{\circ} \mathrm{C}$. Heat is transferred to the gas until the temperature is $108^{\circ} \mathrm{C}$. Find the work done, the heat transferred and the changes in internal energy, enthalpy and entropy.
(08 Marks)
8 a. State the following and write mathematical expressions :
(i) Dalton's law of partial pressures.
(ii) Amagat law of additive volumes.
(iii) Law of corresponding states.
(12 Marks)
b. Write short notes on:
(i) Real gases.
(ii) Compressibility chart.
(08 Marks)

